Design of Staged Alert System with a Wastewater Signal Wastewater-Based Epidemiology Seminar Series

Shuotao (Sonny) Diao, Mar. 27, 2024 Joint work with Guyi Chen and David Morton

Modeling Team

Dr. Katelyn Leisman

Maria Warns

Guyi Chen

Prof. Aaron I. Packman

Prof. David P. Morton

Prof. Niall Mangan

Northwestern MCCORMICK SCHOOL OF ENGINEERING

Outline

- SARS-CoV-2 virus in the wastewater
- Staged-alert system and SEIR-V model
- Retrospective analysis of staged-alert system with a wastewater signal

Outline

SARS-CoV-2 virus in the wastewater

- Staged alert system and SEIR-V model
- Retrospective analysis of staged alert system with a wastewater signal

How does SARS-CoV-2 virus appear in the wastewater?

Motivation:

We want to know how many people are sick.

Solutions:

Use wastewater to estimate how severe the pandemic is.

Challenges:

It is not straightforward to connect wastewater to prevalence because of flow rate, temperature, chemical composition, population changes, etc.

SARS-CoV-2 virus flows through wastewater pipelines

Credits:

1. COVID-19 virus image is from https://phil.cdc.gov/details.aspx?pid=23312

2. Calumet WRP image is from https://legacy.mwrd.org/irj/portal/anonymous?NavigationTarget=navurl://1e47bf16ca721c69e2e239f32ce809ca

Shedding SARS-CoV-2 virus

Collecting wastewater sample

Wastewater Treatment Plant

Relating RNA in wastewater to public health (Leisman, et al., 2024)

Leisman, Katelyn Plaisier, et al. "A modeling pipeline to relate municipal wastewater surveillance and regional public health data." Water Research 252 (2024): 121178.

Outline

- SARS-CoV-2 virus in the wastewater
- Staged alert system and SEIR-V model
- Retrospective analysis of staged alert system with a wastewater signal

Model the pandemic (i.e., how a disease spreads, how public interventions may affect the outcome of the pandemic)

Mitigate a future surge of the pandemic

Outline

- SARS-CoV-2 virus in the wastewater
- Staged-alert system and SEIR-V model
 - **Basic SEIR-V Model**
 - Finite-Difference Equations of SEIR-V Model
 - High-Fidelity Model
 - Threshold Optimization Problem
- Retrospective analysis of staged-alert system with a wastewater signal

Applications of the Staged-Alert System

Example: Staged-Alert System used

Dy Austin, Texas	Practice Good Hygiene	Maintain	Wear Facial	Highe Age ove pressure, he immun	er Risk Indiv r 65, diabetes, hig eart, lung and kidi iocompromised, d	iduals gh blood ney disease, bbesity	Lower Risk Individuals No substantial underlying health conditions			Workplaces Open			
	Stay Home	Social Distancing	Coverings		Avoid			Avoid					
				Avoid Gatherings	Non- Essential	Avoid Dinina/	Avoid Gatherings	Non- Essential	Avoid Dinina/				
	People			J	Travel	Shopping	J	Travel	Shopping				
Stage 1	•			greater than 25		except with precautions	gathering size TBD			all businesses			
Stage 2	•	•	•	greater than 10		except as essential	greater than 25		except with precautions	essential and re- opened businesses			
Stage 3	•	•	•	social and greater than 10	•	except as essential	social and greater than 10		except with precautions	essential and re- opened businesses			
Stage 4	•	•	•	social and greater than 2	•	except as essential	social and greater than 10	•	except expanded essential businesses	expanded essential businesses			
Stage 5	•	•	•	outside of household	•	except as essential	outside of household	•	except as essential	essential businesses only			

Use this color-coded alert system to understand the stages of risk. This chart provides recommendations on what people should do to stay safe during the pandemic. Individual risk categories identified pertain to known risks of complication and death from COVID-19. This chart is subject to change as the situation evolves.

COVID-19: Risk-Based Guidelines

Published: May 13, 2020

Applications of the Staged-Alert System

Example: Staged-Alert System used by UK

Coronavirus alert levels in UK

Stage of outbrea

Risk of healthcare service being overwhelme

> Transmission is high o rising exponential

> > Virus is in genera circulatio

Number of cases an transmission is low

Covid-19 no longe present in U

Source : UK government

k		Measures in place
es ed	5	Extremely strict social distancing
or ly	4	Social distancing continues
al on	3	Gradual relaxation of restrictions
id w	2	Minimal social distancing, enhanced tracing
er K	1	Routine international monitoring

BBC

Applications of the Staged-Alert System

Example: Staged-Alert System used by CDC

COVID-19 Community Levels – Use the Highest Level that Applies to Your Community									
New COVID-19 Cases Per 100,000 people in the past 7 days	Indicators	Low	Medium	High					
	New COVID-19 admissions per 100,000 population (7-day total)	<10.0	10.0-19.9	≥20.0					
Fewer than 200	Percent of staffed inpatient beds occupied by COVID-19 patients (7-day average)	<10.0%	10.0-14.9%	≥15.0%					
	New COVID-19 admissions per 100,000 population (7-day total)	NA	<10.0	≥10.0					
200 or more	Percent of staffed inpatient beds occupied by COVID-19 patients (7-day average)	NA	<10.0%	≥10.0%					

CDC's Staged Alert System

SEIR-V Compartmental Model

Hospital **Admissions**

Fit the SEIR-V model so that the simulated hospital admissions and viral load track the reported data

SEIR-V Compartmental Model Deterministic SEIR Model

Daily exposed individuals: S(t)

Daily change in the compartment E:

Daily change in the compartment I:

Daily change in the compartment R:

$$+1) - S(t) = -\Delta S(t) = -S(t) \left[\frac{(1 - \kappa(t))\beta}{N} I(t) \right]$$

$$E(t+1) - E(t) = S(t) \left[\frac{(1-\kappa(t))\beta}{N} I(t) \right] - \lambda E(t)$$

$$I(t+1) - I(t) = \lambda E(t) - \gamma I(t)$$

$$R(t+1) - R(t) = \gamma I(t)$$

SEIR-V Compartmental Model Stochastic SEIR Model

Daily exposed individuals:

Daily change in the compartment E:

Daily change in the compartment I:

Daily change in the compartment R:

$$\tilde{S}(t + \Delta t) - \tilde{S}(t) = -\tilde{\xi}_{1}, \ \tilde{\xi}_{1} \sim \text{Binomial}\left(\tilde{S}(t), \frac{(1 - \kappa(t))\beta}{N}\tilde{I}(t)\Delta t\right)$$

$$\tilde{E}: \qquad \tilde{E}(t + \Delta t) - \tilde{E}(t) = \tilde{\xi}_{1} - \tilde{\xi}_{2}, \ \tilde{\xi}_{2} \sim \text{Binomial}(\tilde{E}(t), \lambda\Delta t)$$

$$\tilde{I}(t + \Delta t) - \tilde{I}(t) = \tilde{\xi}_{2} - \tilde{\xi}_{3}, \ \tilde{\xi}_{3} \sim \text{Binomial}\left(\tilde{I}(t), \gamma\Delta t\right)$$

$$\tilde{R}: \qquad \tilde{R}(t + \Delta t) - \tilde{R}(t) = \tilde{\xi}_{3}$$

SEIR-V Compartmental Model Viral Load Model

Daily exposed individuals: $S(t + \Delta)$

Daily viral load:

Viral Shedding Function:

V(t) =

$$\Delta t) - S(t) = -\Delta S(t) = -S(t) \left[\frac{(1 - \kappa(t))\beta}{N} I(t) \Delta t \right]$$
$$\sum_{i=0}^{N} \phi_{i\Delta t:(i+1)\Delta t}(\omega) \Delta S(t - i\Delta t)$$
$$O = 10^{\frac{\omega_1 t}{\omega_2^2 + t^2}} \quad \phi_{i\Delta t:(i+1)\Delta t}(\omega) = \int_{i\Delta t}^{(i+1)\Delta t} f(t;\omega) dt$$

$$V_t = \sum_{i=0}^{N} \phi_{i:i+1}(\omega) \Delta S_{t-i}$$

SEIR-V Compartmental Model An Illustrative Example

SEIR-V Compartmental Model An Illustrative Example $\omega_1 = 80, \omega_2 = 4$

SEIR-V Compartmental Model High-Fidelity Model

SEIR-V Compartmental Model General Model: Ordinary Differential Equations

Daily exposed individuals: $S(t+1) - S(t) = -\Delta S(t) = -\Delta S(t) = -\Delta S(t)$

Daily change in the compartment E: E(t+1) - E(t) = S(t)

Daily change in the compartment I: $I(t + 1) - I(t) = \lambda E(t)$

Daily change in the compartment R: $R(t+1) - R(t) = \gamma I$

$$-S(t)\left[\frac{(1-\kappa(t))\beta}{N}I(t)\right] \qquad dS(t) = -S(t)\left[\frac{(1-\kappa(t))\beta}{N}I(t)\right] dt$$

$$(t)\left[\frac{(1-\kappa(t))\beta}{N}I(t)\right] - \lambda E(t) \qquad dE(t) = \left[S(t)\left[\frac{(1-\kappa(t))\beta}{N}I(t)\right] - \lambda R(t)\right] dt$$

$$(t) - \gamma I(t) \qquad dI(t) = \left[\lambda E(t) - \gamma I(t)\right] dt$$

$$(t) = \gamma I(t) dt$$

SEIR-V Compartmental Model General Model: Ordinary Differential Equations

Daily exposed individuals: $S(t+1) - S(t) = -\Delta S(t) = -S(t) \left| \frac{(1-\kappa(t))\beta}{N} I(t) \right|$

Daily viral load:

$$V(t) = \int_0^T S(t-s) \left[\frac{(1-\kappa(t-s))\beta}{N} I(t-s) \right] f(s;\omega) ds$$

Viral Shedding Function:

$$f(t;\omega) = 10^{\frac{\omega_1 t}{\omega_2^2 + t^2}}$$

$$dS(t) = -S(t) \left[\frac{(1 - \kappa(t))\beta}{N} I(t) \right] dt$$

Threshold Optimization Problem How to find the optimal thresholds in the Staged Alert System

Daily exposed individuals: S(t + 1)

Transmission reduction is controlled by the threshold and critical stat (e.g., hospital admissions, wastewater signals):

Threshold Optimization Problem

Minimize social-economic-cost(history-of-stages)

Subject to history-of-stages from SEIR-V(thresholds)

ICU is not overwhelmed from SEIR-V(thresholds)

$$-S(t) = -\Delta S(t) = -S(t) \left[\frac{(1-\kappa(t))\beta}{N} I(t) \right]$$

Outline

- SARS-CoV-2 virus in the wastewater
- Staged-alert system and SEIR-V model

Retrospective analysis of staged-alert system with a wastewater signal

Experiment Wastewater Policy versus Hospitalization Policy (Guyi Chen)

Scope:

Population served by Calumet, O'Brien, and Stickney wastewater treatment plants is considered.

Goal:

Find the thresholds that have least socioeconomic costs while maintaining occupied ICU beds below the associated capacity.

Remark: Special thanks for Guyi's great contribution for numerical experiment and later retrospective analysis. Also, thanks to the IDPH/DPI data team for providing the clinical data.

Stages	Transmission reduction	Economic co
Red	80%	1000
Orange	72.5%	100
Yellow	65%	10
Blue	57.5%	1

Wastewater Policy Versus Hospitalization Policy More Details

- We consider the following two time periods for the policy optimization and evaluation.
- First surge of COVID-19:
 - from 3/21/2020 to 10/7/2020 (200 days)
 - ICU capacity: **950**
- Second surge of COVID-19:
 - from 10/8/2020 to 3/13/2021 (156 days)
 - ICU capacity: **570**
- We generate two sets of 300 Monte Carlo simulation sample paths, which we use for cross validating the performance of the policies.

Smaller threshold 3 value means more restricted policy. More risky: More relaxed constraint on the ICU violation, Prob(ICU capacity is violated) $\leq 5\%$. Less risky: Prob(ICU capacity is violated) $\leq 1\%$.

Observation: The larger the threshold3 value is, the larger the probability of ICU violation is. Wastewater policy generally incurs less socioeconomic cost.

Evaluation Performance Summary

Low risk: Prob(ICU capacity is violated) $\leq 1\%$

	Les	Less Risky Policy			More Ris			
	First	Peak	Second	l Peak	First	Peak	Second	d Peak
	Viral Load	Hospital Admission	Viral Load	Hospital Admission	Viral Load	Hospital Admission	Viral Load	Hospital Admission
Median cost $[90\% PI]$	50.6K [46K- 64.1K]	65K [51.5K- 78.5K]	23.7K [15.6K- 30.9K]	27.3K [21K- 34.5K]	49.7K [45.2K- 62.3K]	60.5K [49.7K- 74.5K]	22.8K [15.6K- 30K]	26.4K [18.3K- 30.9K]
Median days in red stage [90% PI]	34 [29-49]	50 [35-63]	9 [0-17]	13 [6-18]	33 [28-47]	45 [33-61]	8 [0-16]	12 [3-17]
Probability ICU demand exceeds capacity	0.0%	0.7%	1.0%	0.7%	2.7%	4.7%	3.7%	3.0%
Median peak ICU demand	862.0	833.0	500.0	482.0	888.0	852.0	526.0	500.0
95th percentile of peak ICU demand	919.0	926.0	545.0	540.0	943.0	943.0	567.0	561.0
Median peak hospitalizations	3982.0	3517.0	2290.0	2233.0	4076.0	3624.0	2378.0	2311.0
95th percentile peak hospitalizations	4155.0	3880.0	2540.0	2536.0	4263.0	3989.0	2640.0	2632.0

ICU Capacity: 950

ICU Capacity: 5

Medium risk: Prob(ICU capacity is violated) $\leq 5\%$

|--|

Evaluation Performance Summary

Lo	ow risk: Prob	(ICU capacit	t <mark>y is violated</mark>)	$\leq 1\%$	Medium risk: Prob(ICU capacity is violated) \leq			
	Les	s Risky Pol	licy		More Ris	ky Policy		
	First	Peak	Second	l Peak	First	Peak	Second Peak	
	Viral Load	Hospital Admission	Viral Load	Hospital Admission	Viral Load	Hospital Admission	Viral Load	Hospital Admission
Median cost [90% PI]	51.5K [45.2K- 63.2K]	65K [52.3K- 79K]	23.7K [15.6K- 30K]	27.3K [21K- 33.6K]	50.6K [45.2K- 61.4K]	61.4K [50.5K- 75.8K]	22.8K [15.6K- 29.1K]	26.4K [18.2K- 31.8K]
Median days in red stage [90% PI]	35 [28-48]	50 [36-66]	9 [0-16]	13 [6-20]	34 [28-46]	46 [33-62]	8 [0-15]	12 [3-18]
Probability ICU demand exceeds capacity	2.3%	2.7%	0.7%	0.7%	4.0%	5.3%	3.7%	2.3%
Median peak ICU demand	869.0	828.0	502.0	480.0	886.0	849.0	527.0	502.0
95th percentile of peak ICU demand	935.0	927.0	542.0	539.0	947.0	955.0	566.0	555.0
Median peak hospitalizations	4019.0	3534.0	2333.0	2289.0	4076.0	3616.0	2401.0	2300.0
95th percentile peak hospitalizations	4197.0	3879.0	2533.0	2486.0	4278.0	3984.0	2647.0	2609.0

ICU Capacity: 950

ICU Capacity: 570

Takeaway from wastewater policy: ICU capacity is protected with less socioeconomic cost.

ICU Projection

Takeaways of wastewater policy:

- There are fewer days in red stage.
- Width of the wastewater cloud is narrower around the peak, which is due to the upstream sampling (in the SEIR-V model).

7-day moving average of COVID hospital admission

VS 7-day moving average of SARS-Cov-2 RNA viral load in wastewater with various collection frequency

Various Collection Frequency

Prob(ICU Violation) $\leq 1\%$ **Prob(ICU Violation)** $\leq 5\%$

- sampling frequency: everyday (admission)
- sampling frequency: once a week
- sampling frequency: twice a week
- sampling frequency: three times a week

Prob(ICU Violation) $\leq 1\%$ **Prob(ICU Violation)** $\leq 5\%$

Various Collection Frequency

- sampling frequency: everyday (admission)
- sampling frequency: once a week
- sampling frequency: twice a week
- sampling frequency: three times a week

ICU Projection

Twice a week

Once a week

Takeaway:

Decreasing sample collection frequency may increase socioeconomic cost.

Summary & Future Work

- We design a staged-alert system guided by the wastewater signal.
- We perform a retrospective analysis to compare wastewater policy and hospitalization policy.
- This framework shows great potential in guiding upstream sampling (e.g., ramp up sample collection or lab report based on the indicated stage)
- Future work includes
- + Using finer grid and lager sample paths to obtain more accurate policy (i.e., thresholds)
- Using data degradation to mimic the noise in the streaming data
- Designing a staged-alert system guided by the hybrid signals
- Designing an adaptive staged-alert system that is able to track the evolution of the virus.